

A gentle introduction to OMUSE: A Python
framework for multiphysics simulations in

Oceanography

IMUM 2016, 27-30 September 2016, OMP, Toulouse

Inti Pelupessy1,2 Ben van Werkhoven3 Arjen van Elteren2

Jan Viebahn4 Adam Candy5 Simon Portegies Zwart2 Henk Dijkstra1
1IMAU Utrecht 2Leiden Observatory 3NLeSc Amsterdam 4CWI Amsterdam 5TU Delft

What is OMUSE?
→ Oceanographic Multi-PUrpose Software Environment
→ OMUSE is a Python environment for oceanographic
 numerical experiments

Goals:
- provide a homogeneous enviroment
 to run community codes
- enable new code couplings and
 interactions between components
- facilitate multi-physics and
 multi-scale simulations

Why OMUSE?
many excellent oceanographic codes have been written,
so why OMUSE?

traditional monolithic codes present challenges:
- difficult to learn&use,
- difficult to maintain and adapt,
- difficult to couple with other models,
- difficult to extend with new physics

so why not build on the legacy of the oceanographic community
and build a toolbox using existing codes?

History of OMUSE
- OMUSE build on AMUSE,
 started in the MODEST
 community

- development of predecessor and prototype around 2006: MUSE
- MUSE features retained in AMUSE: python based, 4 domains
- around 2009: more formal development started with funding
 from NOVA and later NWO,
- main development team in Leiden
- actively being used by 15+ groups worldwide
- 30+ publications, 8+ theses

- 2012 – 2013: discussions on wider applicability, call from the
 NLeSc for interdisciplinary projects, interest from Henk Dijkstra

- 2014: start of development @IMAU of OMUSE with funding
 from NLeSc, OMUSE main developers: Pelupessy (IMAU) &
 van Werkhoven (NLeSc)

- 2015 – 2016: current development of prototype & initial
 capability

History of OMUSE

from omuse.units import units
from omuse.community.qgmodel.interface import QGmodel
from amuse.io import read_set_from_file

input=read_set_from_file('initial_condition')

code=QGmodel()

code.parameters.dt=0.5 | units.hour
code.grid.psi=input.psi

code.evolve_model(1.| units.day)

print code.grid.psi.max().in_(units.Sv/units.km)

'Hello Ocean'

“imports”

“initial cond.”

“instantiate
community code”

“evolve”

“analysis”

“initialize model”

OMUSE interface design

AMUSE & OMUSE design highlights
- python based:
 algorithmic flexibility and ease of programming
- remote function interfaces:
 built-in parallelism & separation of memory space, thread safety
- unit algebra module: units imposed
- automatic state handling
- object oriented interfaces
- error handling & stopping conditions
- testing integral part of AMUSE development:
 2000+ tests covering the base framework, support libraries
 and the community interfaces (>80% code coverage),
- test suite run daily on different (virtual) machines

Current status of OMUSE

initial set of codes currently in OMUSE:
- QGmodel: solves barotropic vorticity equation on
 rectangular cartesian grid
- ADCIRC: shallow water coastal model, solves 2D or 3D
 momentum equations
- SWAN: wave propagation model, implicit, solves spectral
 action balance equation
- POP: solves three-dimensional primitive equations for
 ocean dynamics
- QGCM: multi-layer QG solver, atmosphere + ocean
- under consideration: XBEACH, SELFE, Delft3D, ...

Current status of OMUSE

Development of support code:

- AMUSE framework support for different grid types
- grid transformations (e.g. dipolar, tripolar)
- remapping schemes
- triangulate package (building unstructered meshes)
- importers for netcdf data etc
- integrion of plotting libraries
- ext (utility functions, ..)
- unit support for 'oceanographic' specific units

OMUSE interface design

The interface to a code defines the way you talk to a code
from python:

- interfaces are based on physics rather than numerics
- codes from the same domain use the same interface
- communicate objects rather than arrays
- impose the use of units
- model calling sequence in state model
- function calls are remote
- stopping conditions to detect events and guard integrity
 of the simulation results

example: Quasi-geostrophic model
-qgmodel code (Viebahn 2014) , solves barotropic vorticity
 equation:

easy example, because:
- small number of variables and
 parameters
- simple, fast solver
- regular cartesian grid

 brief steps of implementation of the QGModel interface:
→ make code library
→ define interface: parameters, model setters and getters, units
→ rewrite main into evolve_model
→ define state model & grid variables
→ write tests!

extra steps:
- change hardcoded wind model → interface wind
- add interface boundary conditions
- add fishpack Poisson solver (for portability)

Quasi-geostrophic model

Datamodel: Grid support

- OMUSE uses high level objects to describe state of a system:
 grids and particles sets
- these can reference memory storage, disk storage or the state
 of a community code

Datamodel: Grid remapping

→ abstraction for data transport: channels
normal (copy): channel.copy_attribute(“density”)
functional transforms: channel.transform(target, function, src)

takes input attributes and transforms to (different) target attributes
remapping channels:
 - remaps values between grids using a remapper object
 - various remappers
 available:
interpolate, conservative
 - same semantics for
 usage.

What can you do with OMUSE?

- simplify setup and model runs,
- scripting simulations:

parameters searches
optimizations (e.g. MCMC)
event detection,
stoppage conditions

- 'online' data analysis
- cross verification: running problems
with different codes and method
- coupling different codes to construct
new solvers

qgmodel

adcirc

Coupling codes in OMUSE
- the community code interfaces define a simple and homogeneous
 way of running codes,
- the interface provides read+write access to the state, forcings,
 boundary conditions etc. of a running code with very
 little overhead,
- code state is kept consistent by the interface,

→ the interface can be used to implement (explicit) couplings between
 different codes.

+ couplings can be formulated efficiently
+ couplings can be defined in a code agnostic way
+ coupling between codes running on different machines

 + easy to set up such that coupled code conform to interface spec.
 - overhead of framework calls

ADCIRC/ SWAN: Hurricane Gustave example
data from: www.caseydietrich.com

t0+156hr t0+168hr

t0+174hr t0+180hr

OMUSE coupled solver: ADCIRC/ SWAN

(1) channel1=hurricane.grid.new_channel_to(swan.forcings)
() channel2=hurricane.grid.new_channel_to(adcirc.forcings)
() channel3=adcirc.nodes.new_channel_to(swan.forcings)
() channel4=swan.nodes.new_channel_to(adcirc.forcings)
(2) while time<tend:
(3) hurricane.evolve_model(time+dt/2)
(4) channel1.copy_attributes(["tau_x","tau_y"])
() channel2.copy_attributes(["vx","vy"])
(5) adcirc.evolve_model(time+dt/2)
() swan.evolve_model(time+dt/2)
(6) channel3.copy_attributes(["current_vx","current_vy"])
() channel4.copy_attributes(["wave_tau_x","wave_tau_y"])

in short, OMUSE...

easy to use:
- effortless using of different codes
- automation of unit conversions, state handling
- no learning different I/O formats, parameter files, etc

encourages reproducability:
- open source policies
- easy cross verification across different codes and numerical
 methods
- low barrier for communication of experiments: portable
 scripts

OMUSE distribution:

Code papers: Pelupessy et al. 2016, under GMD discussion
(http://www.geosci-model-dev-discuss.net/gmd-2016-178/)

Pelupessy et al. 2013, A&A 557, 84
 Portegies Zwart et al. 2013, CoPhC 183, 456

- source repository, soon also binary release:
bitbucket.org/omuse/omuse

repository contains OMUSE specific code and open source
community codes (all except ADCIRC)

- example script repository:
bitbucket.org/omuse/omuse-examples

- AMUSE frame work:
 www.amusecode.org

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21

