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What is OMUSE?

— Oceanographic Multi-PUrpose Software Environment
— OMUSE is a Python environment for oceanographic

numerical experiments

Goals:
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Why OMUSE?

many excellent oceanographic codes have been written,
so why OMUSE?

traditional monolithic codes present challenges:
- difficult to learn&use,
- difficult to maintain and adapt,

- difficult to couple with other models,

- difficult to extend with new physics

so why not build on the legacy of the oceanographic community

and build a toolbox using existing codes?



History of OMUSE

- OMUSE build on AMUSE,
started in the MODEST

community Modeling and Observing

DEnse STellar systems

- development of predecessor and prototype around 2006: MUSE

- MUSE features retained in AMUSE: python based, 4 domains

- around 2009: more formal development started with funding
from NOVA and later NWO,

- main development team in Leiden

- actively being used by 15+ groups worldwide

- 30+ publications, 8 + theses



History of OMUSE

- 2012 - 2013: discussions on wider applicability, call from the

NLeSc for interdisciplinary projects, interest from Henk Dijkstra

- 2014: start of development @IMAU of OMUSE with funding
from NLeSc, OMUSE main developers: Pelupessy (IMAU) &
van Werkhoven (NLeSc)

- 2015 - 2016: current development of prototype & initial
capability



'Hello Ocean'

. ) from omuse.units import units
Imports from omuse.community.qgmodel.interface import QGmodel
from amuse.io import read_set_from_file

“Initial cond.” input=read_set_from_file('initial_condition')

“Instantiate

community code” code=QGmodel()

“initialize model” code.parameters.dt=0.5 | units.hour
code.grid.psi=input.psi

“evolve” code.evolve_model(1.]| units.day)

“analysis” print code.grid.psi.max().in_(units.Sv/units.km)



OMUSE interface design
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AMUSE & OMUSE design highlights
- python based:

algorithmic flexibility and ease of programming
- remote function interfaces:
built-in parallelism & separation of memory space, thread safety
- unit algebra module: units imposed
- automatic state handling
- object oriented interfaces
- error handling & stopping conditions
- testing integral part of AMUSE development:
2000 + tests covering the base framework, support libraries
and the community interfaces (>80% code coverage),

- test suite run daily on different (virtual) machines



Current status of OMUSE

initial set of codes currently in OMUSE:

- QGmodel: solves barotropic vorticity equation on
rectangular cartesian grid

- ADCIRC: shallow water coastal model, solves 2D or 3D
momentum equations

- SWAN: wave propagation model, implicit, solves spectral
action balance equation

- POP: solves three-dimensional primitive equations for
ocean dynamics

- QGCM: multi-layer QG solver, atmosphere + ocean

- under consideration: XBEACH, SELFE, Delft3D, ...



Current status of OMUSE

Development of support code:

- AMUSE framework support for different grid types
- grid transformations (e.g. dipolar, tripolar)

- remapping schemes

- triangulate package (building unstructered meshes)
- importers for netcdf data etc

- integrion of plotting libraries

- ext (utility functions, ..)

- unit support for 'oceanographic' specific units



OMUSE interface design

The interface to a code defines the way you talk to a code

from python:

- interfaces are based on physics rather than numerics

- codes from the same domain use the same interface

- communicate objects rather than arrays

- impose the use of units

- model calling sequence in state model

- function calls are remote

- stopping conditions to detect events and guard integrity

of the simulation results



example: Quasi-geostrophic model

-ggmodel code (Viebahn 2014) , solves barotropic vorticity

equation:
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Quasi-geostrophic model

brief steps of implementation of the QGModel interface:
— make code library
— define interface: parameters, model setters and getters, units
— rewrite main into evolve_model
— define state model & grid variables

— write tests!

extra steps:
- change hardcoded wind model — interface wind
- add interface boundary conditions

- add fishpack Poisson solver (for portability)



Datamodel: Grid support

- OMUSE uses high level objects to describe state of a system:
grids and particles sets

- these can reference memory storage, disk storage or the state
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Datamodel: Grid remapping

— abstraction for data transport: channels
normal (copy): channel.copy_attribute(“density”)
functional transforms: channel.transform( target, function, src)
takes input attributes and transforms to (different) target attributes
remapping channels:
- remaps values between grids using a remapper object

- various remappers

available:
interpolate, conservative |
- same semantics for

usage.




What can you do with OMUSE?

- simplify setup and model runs,
- scripting simulations:
parameters searches
optimizations (e.g. MCMC)
event detection,
stoppage conditions
- 'online' data analysis
- cross verification: running problems
with different codes and method
- coupling different codes to construct

new solvers
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Coupling codes in OMUSE
- the community code interfaces define a simple and homogeneous
way of running codes,
- the interface provides read + write access to the state, forcings,
boundary conditions etc. of a running code with very
little overhead,

- code state is kept consistent by the interface,

— the interface can be used to implement (explicit) couplings between
different codes.
+ couplings can be formulated efficiently
+ couplings can be defined in a code agnostic way
+ coupling between codes running on different machines
+ easy to set up such that coupled code conform to interface spec.

- overhead of framework calls
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ADCIRC/ SWAN: Hurricane Gustave example
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OMUSE coupled solver: ADCIRC/ SWAN

Atmosphere
model

nodes

wind stress wind velocity

forcings forcings

ADCIRC SWAN

nodes current wave nodes

stress

channell=hurricane.grid.new_channel_to( swan.forcings )
channel2=hurricane.grid.new_channel_to( adcirc.forcings )
channel3=adcirc.nodes.new_channel_to( swan.forcings )
channeld4=swan.nodes.new_channel_to( adcirc.forcings )
while time<tend:
hurricane.evolve_model(time+dt/2)
channell.copy_attributes(["tau_x","tau_y"])
channel2.copy_attributes(["vx", "vy"])
adcirc.evolve_model(time+dt/2)
swan.evolve_model(time+dt/2)
channel3.copy_attributes(["current_vx", "current_vy"])
channel4.copy_attributes(["wave_tau_x", "wave_tau_y"])



in short, OMUSE...

easy to use:
- effortless using of different codes
- automation of unit conversions, state handling

- no learning different /0 formats, parameter files, etc

encourages reproducability:

- open source policies

- easy cross verification across different codes and numerical
methods

- low barrier for communication of experiments: portable

scripts



OMUSE distribution:

- source repository, soon also binary release:
bitbucket.org/omuse/omuse
repository contains OMUSE specific code and open source

community codes (all except ADCIRC)

- example script repository:
bitbucket.org/omuse/omuse-examples
- AMUSE frame work:

www.amusecode.org

Code papers: Pelupessy et al. 2016, under GMD discussion

(http://www.geosci-model-dev-discuss.net/gmd-2016-178/)
Pelupessy et al. 2013, A&A 557, 84
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