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What is OMUSE?
→ Oceanographic Multi-PUrpose Software Environment
→ OMUSE is a Python environment for oceanographic
     numerical experiments

Goals:
- provide a homogeneous enviroment
  to run community codes
- enable new code couplings and 
  interactions between components
- facilitate multi-physics and 
  multi-scale simulations 



  

Why OMUSE?
many excellent oceanographic codes have been written,
so why OMUSE? 

traditional monolithic codes present challenges:
- difficult to learn&use, 
- difficult to maintain and adapt,
- difficult to couple with other models,
- difficult to extend with new physics

so why not build on the legacy of the oceanographic community
and build a toolbox using existing codes?



  

History of OMUSE
- OMUSE build on AMUSE,
  started in the MODEST
  community

- development of predecessor and prototype around 2006: MUSE
- MUSE features retained in AMUSE: python based, 4 domains
- around 2009: more formal development started with funding 
  from NOVA and later NWO,
- main development team in Leiden
- actively being used by 15+ groups worldwide
- 30+ publications, 8+ theses



  

- 2012 – 2013: discussions on wider applicability, call from the 
  NLeSc for interdisciplinary projects, interest from Henk Dijkstra

- 2014: start of development @IMAU of OMUSE with funding 
  from NLeSc, OMUSE main developers: Pelupessy (IMAU) &
  van Werkhoven (NLeSc)

- 2015 – 2016: current development of prototype & initial 
  capability 

History of OMUSE



  

from omuse.units import units
from omuse.community.qgmodel.interface import QGmodel
from amuse.io import read_set_from_file

input=read_set_from_file('initial_condition')

code=QGmodel()

code.parameters.dt=0.5 | units.hour
code.grid.psi=input.psi

code.evolve_model(1.| units.day)

print code.grid.psi.max().in_(units.Sv/units.km)

'Hello Ocean'

“imports”

“initial cond.”

“instantiate 
community code”

“evolve”

“analysis”

“initialize model”



  

OMUSE interface design



  

AMUSE & OMUSE design highlights
- python based: 
  algorithmic flexibility and ease of programming 
- remote function interfaces:
  built-in parallelism & separation of memory space, thread safety
- unit algebra module: units imposed
- automatic state handling
- object oriented interfaces
- error handling & stopping conditions
- testing integral part of AMUSE development:
  2000+ tests covering the base framework, support libraries
  and the community interfaces (>80% code coverage),
- test suite run daily on different (virtual) machines



  

Current status of OMUSE

initial set of codes currently in OMUSE:
- QGmodel: solves barotropic vorticity equation on 
  rectangular cartesian grid
- ADCIRC: shallow water coastal model, solves 2D or 3D 
  momentum equations
- SWAN: wave propagation model, implicit, solves spectral 
  action balance equation
- POP: solves three-dimensional primitive equations for 
  ocean dynamics
- QGCM: multi-layer QG solver, atmosphere + ocean
- under consideration: XBEACH, SELFE, Delft3D, ...



  

Current status of OMUSE

Development of support code:

- AMUSE framework support for different grid types
- grid transformations (e.g. dipolar, tripolar)
- remapping schemes
- triangulate package (building unstructered meshes)
- importers for netcdf data etc
- integrion of plotting libraries 
- ext (utility functions, ..) 
- unit support for 'oceanographic' specific units



  

OMUSE interface design

The interface to a code defines the way you talk to a code 
from python:

- interfaces are based on physics rather than numerics
- codes from the same domain use the same interface
- communicate objects rather than arrays
- impose the use of units
- model calling sequence in state model
- function calls are remote
- stopping conditions to detect events and guard integrity
  of the simulation results



  

example: Quasi-geostrophic model
-qgmodel code (Viebahn 2014) , solves barotropic vorticity 
  equation:

easy example, because:
- small number of variables and
  parameters
- simple, fast solver
- regular cartesian grid



  

  brief steps of implementation of the QGModel interface:
→  make code library
→  define interface: parameters, model setters and getters, units
→  rewrite main into evolve_model
→  define state model & grid variables
→  write tests!

extra steps:
- change hardcoded wind model → interface wind 
- add interface boundary conditions
- add fishpack Poisson solver (for portability)

Quasi-geostrophic model



  

Datamodel: Grid support

- OMUSE uses high level objects to describe state of a system:
  grids and particles sets
- these can reference memory storage, disk storage or the state 
  of a community code



  

Datamodel: Grid remapping

→ abstraction for data transport: channels
normal (copy): channel.copy_attribute(“density”) 
functional transforms: channel.transform( target, function, src)

takes input attributes and transforms to (different) target attributes
remapping channels:
  - remaps values between grids using a remapper object
  - various remappers
    available:
interpolate, conservative  
  - same semantics for
  usage.



  

What can you do with OMUSE?

- simplify setup and model runs,
- scripting simulations:

parameters searches
optimizations (e.g. MCMC)
event detection,  
stoppage conditions

- 'online' data analysis
- cross verification: running problems 
with different codes and method
- coupling different codes to construct 
new solvers

qgmodel

adcirc



  

Coupling codes in OMUSE
- the community code interfaces define a simple and homogeneous 
  way of running codes,
- the interface provides read+write access to the state, forcings, 
  boundary conditions etc. of a running code with very 
  little overhead,
- code state is kept consistent by the interface,

→ the interface can be used to implement (explicit) couplings between 
  different codes. 

+ couplings can be formulated efficiently
+ couplings can be defined in a code agnostic way
+ coupling between codes running on different machines

     + easy to set up such that coupled code conform to interface spec.
 - overhead of framework calls



  

ADCIRC/ SWAN: Hurricane Gustave example
data from: www.caseydietrich.com

t0+156hr t0+168hr

t0+174hr t0+180hr



  

OMUSE coupled solver: ADCIRC/ SWAN

(1) channel1=hurricane.grid.new_channel_to( swan.forcings )
( ) channel2=hurricane.grid.new_channel_to( adcirc.forcings )
( ) channel3=adcirc.nodes.new_channel_to( swan.forcings )
( ) channel4=swan.nodes.new_channel_to( adcirc.forcings )
(2) while time<tend:
(3)     hurricane.evolve_model(time+dt/2)
(4)     channel1.copy_attributes(["tau_x","tau_y"])
( )     channel2.copy_attributes(["vx","vy"])
(5)     adcirc.evolve_model(time+dt/2)
( )     swan.evolve_model(time+dt/2)
(6)     channel3.copy_attributes(["current_vx","current_vy"])
( )     channel4.copy_attributes(["wave_tau_x","wave_tau_y"])



  

in short, OMUSE...

easy to use:
- effortless using of different codes
- automation of unit conversions, state handling
- no learning different I/O formats, parameter files, etc

encourages reproducability:
- open source policies
- easy cross verification across different codes and numerical
  methods
- low barrier for communication of experiments: portable
  scripts



  

OMUSE distribution:

Code papers: Pelupessy et al. 2016, under GMD discussion
(http://www.geosci-model-dev-discuss.net/gmd-2016-178/)

Pelupessy et al. 2013, A&A 557, 84
                   Portegies Zwart et al. 2013, CoPhC 183, 456

- source repository, soon also binary release:
bitbucket.org/omuse/omuse

repository contains OMUSE specific code and open source 
community codes (all except ADCIRC)

- example script repository:
bitbucket.org/omuse/omuse-examples

- AMUSE frame work:
 www.amusecode.org
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